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Abstract 

Background: 

The principal triggers for intervention in the setting of pediatric blunt solid organ injury 

(BSOI) are declining hemoglobin values and hemodynamic instability. The clinical management 

of BSOI is, however, complex. We therefore hypothesized that state-of-art machine learning 

(computer-based) algorithms could be leveraged to discover new combinations of clinical 

variables that might herald the need for an escalation in care. We developed algorithms to predict 

the need for massive transfusion (MT), failure of non-operative management (NOM), mortality, 

and successful non-operative management without intervention, all within four hours of 

emergency department (ED) presentation.  

Methods: 

Children (<18 years) who sustained a BSOI (liver, spleen, and/or kidney) between 2009-

2018 were identified in the trauma registry at a pediatric level 1 trauma center. Deep learning 

models were developed using clinical values [vital signs, shock index-pediatric adjusted (SIPA), 

organ injured, and blood products received], laboratory results [hemoglobin, base deficit, INR, 

lactate, thromboelastography (TEG)], and imaging findings [focused assessment with 

sonography in trauma (FAST) and grade of injury on computed tomography scan] from pre-

hospital to ED settings for prediction of MT, failure of NOM, mortality, and successful NOM 

without intervention. Sensitivity, specificity, accuracy, and area under the receiver operating 

characteristic curve (AUC) were used to evaluate each model’s performance.  
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Results: 

A total of 477 patients were included, of which 5.7% required MT (27/477), 7.2% failed 

NOM (34/477), 4.4% died (21/477), and 89.1% had successful NOM (425/477). The accuracy of 

the models in the validation set were as follows: MT (90.5%), failure of NOM (83.8%), mortality 

(91.9%), and successful NOM without intervention (90.3%). Serial vital signs, the grade of organ 

injury, hemoglobin, and positive FAST had low correlations with outcomes.   

Conclusion: 

Deep learning-based models using a combination of clinical, laboratory and radiographic 

features can predict the need for emergent intervention (MT, angioembolization, or operative 

management) and mortality with high accuracy and sensitivity using data available in the first 

four hours of admission. Further research is needed to externally validate and determine the 

feasibility of prospectively applying this framework to improve care and outcomes. 

Key Words: machine learning, big data, deep learning, trauma, massive transfusion, pediatric, 

artificial intelligence 

Level of Evidence: III 

Study Type: Retrospective comparative study (Prognosis/Care Management) 
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Introduction 

Most children who sustain blunt solid organ injuries (BSOI) do not require significant 

intervention (1). Some, however, will require aggressive interventions, such as massive 

transfusion (MT) and/or surgery as life-saving measures. Early BSOI clinical practice guidelines 

used the grade of solid organ injury to guide management (2). The management of BSOI has 

evolved, however, such that most interventions are now guided by hemodynamic status (2). Yet, 

even with close monitoring of hemodynamic status, it can be challenging to identify which 

patients are more likely to require MT or fail non-operative management (NOM). There are 

limitations to using vital signs to evaluate hemodynamic status and predict impending shock in 

children. First, hypotension in children with traumatic injuries and BSOI may be due to severe 

traumatic brain injuries as opposed to hemorrhagic shock (3). Second, as Partrick et al. 

highlighted, “children are recognized as having an increased physiologic reserve and therefore 

may have nearly normal vital signs even in the presence of severe shock (4).”  

Several recent studies have demonstrated promise using the shock index- pediatric adjusted 

(SIPA) score, grading systems, and thromboelastography (TEG) to predict MT and/or failure of 

NOM in pediatric trauma patients (2, 5-9). For MT, several different grading systems have been 

developed with variable performance. The most widely recognized is the ABC score, which has 

been validated in adult trauma patients. It is comprised of four components with one point for 

each of the following: penetrating mechanism, positive focused abdominal sonography for 

trauma (FAST), systolic blood pressure (SBP) <90, and heart rate (HR) >120. A score higher 

than two supports the decision for triggering MT (5). While it was initially found to be 75% 

sensitive and 86% specific, later studies have shown that “the ABC score overestimates the need 
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for transfusion, with a positive predictive value of 50 percent to 55 percent (6).” Additionally, 

the ABC score relies on the FAST exam, which has been found to have poor sensitivity in 

children, and it utilizes vital sign values based on abnormal adult ranges (2). Phillips et al. 

therefore developed the ABCD score to more accurately assess children who sustain blunt or 

penetrating injuries. It is comprised of the ABC score with age-specific SIPA values (abnormal 

versus normal) replacing heart rate and systolic blood pressure, together with lactate and base 

deficit. An ABCD score >3 had a sensitivity of 77.4%, specificity of 78.8%, and a 77.6% 

accuracy in identifying the need for massive transfusion (7). More recent work has shown that 

specific rapid TEG findings are also associated with the need for massive transfusion in blunt 

and penetrating trauma, including:  ACT ≥ 128 sec, angle (α) ≤ 65, maximum amplitude (MA) ≤ 

55 mm, and LY30 ≥ 5% %(8). Linnaus et al. similarly found that a high percentage of children 

who sustained BSOI injuries and required transfusion or failed NOM had elevated SIPA values 

in the trauma bay (9). 

 Machine learning (ML) has the potential to build upon the above findings by identifying 

individual and combinations of features associated with outcomes. Deep learning (DL) is a 

subset of machine learning, which does not require extensive feature engineering based on 

domain knowledge to extract features from raw data (10). Instead, DL has the potential to 

automatically determine features and combinations of features from raw data through linear and 

non-linear models (10). There has been limited application of deep learning thus far in pediatric 

trauma outcomes research. This study aimed to develop DL models to help in decision making 

for pediatric BSOI by predicting which patients:  1) may need massive transfusion; 2) may fail 

NOM; 3) are at risk for mortality; or 4) can be successfully managed with NOM without 

intervention. 
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Methods 

Setting: 

Children’s Hospital Colorado (CHCO) is a 444-bed, free-standing, regional referral 

pediatric hospital.  It is the only American College of Surgeons (ACS) verified Level 1 Pediatric 

Trauma Center in Colorado and the adjacent seven states of North Dakota, South Dakota, 

Nebraska, Kansas, New Mexico, Wyoming, and Montana.  

 

Data Collection and Inclusion Criteria: 

This study was approved by the Colorado Multi-Institutional Review Board (COMIRB) with 

a waiver of informed consent. The institution’s trauma registry was queried for all patients < 18 

years old with a BSOI (liver, spleen, or kidney) from 2009-2018. Data collection included 

demographics (age, gender, race, ethnicity, and insurance type), emergency department (ED) 

vital signs [heart rate (HR) and blood pressure (BP)], ED SIPA, clinical characteristics [Glasgow 

Coma Scale (GCS), intubation status, weight, blood products received, and injury severity score 

(ISS)], imaging findings [Focused Assessment with Sonography in Trauma (FAST) findings, as 

well as organ(s) injured and grade of injury on computed tomography (CT)], and laboratory 

findings [serial hemoglobin values, base deficit, INR, lactate, and TEG] (11). MT was defined as 

receiving >40 cc/kg within 6 hours of presentation (7). All data was de-identified before the 

development of the four models. 

 

Development of the Models: 
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 Many researchers are applying Deep Neural Networks (DNNs) with small datasets across 

various domains. Regression and classification problems formerly treated by traditional machine 

learning methods (like Support Vector Machines, Random Forest, etc.) with a small dataset are 

being solved by DNNs with higher accuracy and better generalization performance. For example, 

in domains like materials science, DNNs with small datasets are being used to predict material 

defects (12). Though DNNs with big datasets is the optimal solution, DNN with small datasets 

can be a reasonable choice when big datasets are unavailable. Various strategies for applying 

deep learning tools to small datasets include carefully selecting loss function (i.e. hinge or cosine 

loss for optimization), transfer learning, regularization techniques like stochastic drop-out 

training to reduce overfitting, and better optimization tools (i.e. batch normalization and learning 

rate) for preventing underfitting (13). 

 A key question is how to best fit machine learning models to relatively small “training” 

data sets, so that accurate predictions can be made on new data. In machine learning jargon, this 

is the question of generalization. Per conventional wisdom in machine learning, a model that is 

too simple will underfit the true patterns in the training data, and thus, it will poorly predict on 

new data. A model that is too complicated will overfit spurious patterns in the training data; such 

a model will also poorly predict on new data.  

Recent deep learning practice appears to eschew this conventional wisdom that was 

applicable to traditional statistical machine learning models. Bornschein et al, in a recent paper 

from the International Conference on Machine Learning (ICML) showed that one can train on a 

smaller subset of the training data while maintaining generalizable results, even for large 

overparameterized models (14). Highly overparameterized neural networks (where the number 

of model parameters exceeds the number of training data) can display strong generalization 
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performance, even on small datasets. In our study, we observed the same generalization 

behavior. In each of our models, the number of model parameters exceeded training data size. 

Due to an imbalanced data set, models were built by under-sampling the majority class. But the 

models performed well on the validation data from the majority class and did not suffer from 

overfitting. 

 Four models were developed: MT, failure of NOM, mortality, and successful NOM 

without intervention. Deep Learning models were developed on Google Cloud Platform using 

Google Colaboratory (Colab) using TensorFlow/Keras 2.0. For each model, two experiments 

were conducted – a model with a 4-hour data set and a model with 24-hour data set. Due to the 

small sample size and unbalanced dataset (i.e. 21 deaths vs. 456 survivors), the majority class 

was under-sampled to create a balanced set for model training. For the MT model, a training set 

of 37 was used and a validation set of 440 was used. For the failure of NOM model, a training set 

of 47 and a validation set of 430 was used. For the mortality model, a training set of 30 and a 

validation set of 447 was used. Lastly, for the successful NOM without intervention model, a 

training set of 66 and validation set of 411 was used. Each deep learning model consisted of 

input layers, hidden layers, and output layers. Leaky rectified linear unit (Leaky ReLU) 

activation functions were used with hinge loss functions for training and optimization of the 

classifiers. Dropout layers were used to regularize and reduce overfitting. 

 

Features: 

 The following features were used in the development of the three models: demographics 

(gender, age, weight), GCS scores, vital signs (HR and BP; for pre-hospital, ED arrival, as well 

as 2 hours and 4 hours after ED arrival), SIPA scores (calculated as heart rate divided by blood 
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pressure; pre-hospital, ED arrival, as well as 2 hours and 4 hours after ED arrival), ED TEG 

values [R-time (R), alpha angle, maximum amplitude (MA), and lysis at 30 minutes (LY30)], lab 

values [hemoglobin (ED arrival, as well as 2 hours and 4 hours after ED arrival), INR, base 

deficit, and lactate], resuscitation metrics [fluid administered in pre-hospital and hospital settings 

(cc/kg) and blood transfusion in pre-hospital and hospital settings (up to 4 hours after 

presentation)], clinical events (intubation in pre-hospital setting or ED, in addition to 

cardiopulmonary resuscitation (CPR) in the pre-hospital setting or ED), presence of a head 

injury, multiple solid organ injuries, and imaging findings (FAST and CT grade of injury). Vital 

signs and laboratory values were used as both continuous variables and categorical variables. 

Categorical inputs were further converted into numerical variables (as required by deep learning 

models) as flags with one or zero value for the following:  abnormal, normal, or unknown. 

Normality of lab values was determined based on institutional ranges. An additional set of 

models were run with the same clinical information available at 24 hours after presentation. 

       

Statistical Analysis: 

Demographic and outcomes data are presented as medians with interquartile ranges for 

continuous variables and as frequencies with percentages for categorical variables. Accuracy, 

sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were 

used to assess performance. Extensive exploratory data analysis including calculation of 

descriptive statistics (mean, median, IQR, minimum, maximum, and missing data counts) was 

conducted to study and compare statistics between populations that received an intervention and 

the population that was successfully managed non- operatively. Statistical techniques such as t-

tests were used to calculate p-values using scikit-learn python libraries like scipy.stats and 
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stats.ttest_ind. For each input feature, counts of missing data by outcome for each population 

group were calculated. 

Various approaches like Pearson correlations, chi-square, and recursive feature 

elimination with cross-validation (RFECV) were used for determining feature importance for 

each model. This helped to inform which features could be excluded from the model when a 

large number of observations were missing a data input. Deleting data can result in reduced 

statistical power, biased estimators, reduced representativeness of the sample, or incorrect 

inferences and conclusions. For handling missing data, we imputed missing values. 

 

Results 

Demographics and Clinical Characteristics 

 A total of 477 pediatric trauma patients sustained BSOI during the study period. The 

median age at the time of injury was 10.0 (IQR 6.0, 14.0) years old. Sixty-five percent of injured 

children were males (311/477). Two-hundred sixty-one patients (54.7%) had liver injuries, 250 

(52.4%) had spleen injuries, and 35 (7.4%) had kidney injuries; a total of 65 patients had 

multiple BSOI injuries (13.6%). Twenty-seven patients (5.7%) required MT. Four patients 

(0.8%) underwent angioembolization, and 34 patients failed non-operative management. Overall, 

21 (4.4%) of the patients died. There were 425 (89.1%) patients who were successively managed 

nonoperatively and survived. The remainder of the demographic and clinical characteristics are 

summarized in Table 1, divided into cohorts by patients who underwent successful NOM without 

intervention and survived versus those who did not. Correlations between clinical characteristics 

and outcomes are demonstrated in Table 2. 
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Performance of the 4-hour Models: 

For MT, the model achieved 90.5% accuracy, 88.9% sensitivity, and 90.5% specificity 

with an AUC of 0.90 for the validation set. For failure of NOM, the model had 83.8% accuracy, 

91.7% sensitivity, and 83.5% specificity with an AUC of 0.88 for the validation set. For the 

outcome of mortality, the model achieved 91.9% accuracy, 100.0% sensitivity, and 91.8% 

specificity with an AUC of 0.96 for the validation set. Lastly, for successful NOM without 

intervention, the model had a 90.3% accuracy, 90.4% sensitivity, and 88.2% specificity with 

AUC of 0.89. 

 

Massive Transfusion 

 The clinical characteristics with the highest absolute correlation with MT was if the 

patient received any blood products within four hours (r= 0.68), intubation status (r=0.48), 

abnormal LY30 (r=0.53), and GCS (r= 0.47). We identified 17 patients (63.0%; 17/27) who met 

ABCD criteria who received MT (7). Another 17 patients (3.8%; 17/450) who met ABCD 

criteria did not receive MT (7). 

 

Failure of NOM 

 A majority of the clinical characteristics had a low correlation with failure of NOM. 

Factors with the highest absolute correlation with failure of NOM were LY30 (r=0.43), R 

(r=0.40), and MA (r=0.38). FAST had a weak correlation with failure of NOM (r= 0.15). Grade 

of organ injury (liver, spleen, and/or kidney) had weak correlation with failure of NOM (all r’s 

<0.2). 
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Mortality 

 The clinical factors that had the highest absolute correlations with mortality were history 

of CPR in the ED (r= 0.68), history of CPR in the field (r= 0.66), ED base deficit values 

(r=0.65), and ED INR value (r= 0.61).  

 

Successful NOM with No Intervention 

The demographics and outcomes of the patients who were successfully treated with NOM 

with no intervention and survived versus those who underwent an intervention (MT, 

angioembolization, and/or surgical management) are demonstrated in Table 1. The clinical 

factors that had the highest absolute correlation in this model were GCS (r= 0.53), 

presence/absence of CPR in the ED (r= 0.52), and intubation in the ED (r= 0.50).  

 

Review of False Positives 

 In a review of the false positives for all four models, common themes were identified 

where model prediction incorrectly identified an outcome or condition. For the MT and failure of 

NOM models, there was a cohort of patients with severe traumatic brain injuries that affected 

their hemodynamic status. Additionally, many patients had concomitant orthopedic injuries such 

as pelvic fractures that contributed to pre-hospital hemodynamic instability, but did not require 

MT. For the mortality model, traumatic brain injury, orthopedic polytrauma, or significant 

cardiac and aortic injuries were common in the false positive patients and likely contributed to 

their initial hemodynamic instability. Lastly, for the successful NOM without intervention 

model, patients classified in the false positive category were incorrectly classified as successful 

NOM. These patients were hemodynamically stable on presentation, and they had worsening 
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physical exam findings over time or signs of bowel or retroperitoneal organ injury requiring 

operative management. 

 

Review of False Negatives 

 False negatives were reviewed in all four models, where the model failed to predict an 

outcome or condition. The MT model had one patient who was incorrectly classified as not 

needing MT, who actually required MT. This patient presented in hemorrhagic shock and 

required MT for stabilization. This patient was missing base deficit, lactate, and INR values. He 

responded to early implementation of MT, and his ED vital signs and SIPA were within normal 

limits for his age. The failure of NOM model had several false negatives, and common themes in 

these patients included initial hemodynamic stability, followed by worsening physical exam 

findings or CT findings warranting operative management. The mortality model had no false 

negatives. In the successful NOM model, most false negatives were patients who were initially 

hemodynamically unstable. Several of these patients also had traumatic brain injuries and 

orthopedic injuries, which affected their initial hemodynamic status. Over time, they were 

managed with blood transfusion or intravenous fluid administration and ultimately stabilized. 

 

Comparison of 4 hour and 24-hour models 

The DL models were run with data available at 24 hours after ED presentation for 

comparison with the models described above (4-hour models). The sensitivity of the MT, failure 

of NOM, mortality models in addition to the successful NOM without intervention model are 

presented in Table 3. The four-hour models outperformed the 24 models for all outcomes. 
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Discussion 

 The present study demonstrates the potential utility of using deep learning to identify 

children with BSOI at risk for poor outcomes, within four hours of presentation. To date, there 

are limited studies using machine and deep learning techniques in the pediatric trauma literature. 

The present study demonstrates the feasibility and efficacy of its use with high accuracy, 

sensitivity, and specificity for all four outcomes in a small dataset. Future work to build upon this 

model using a larger data set could lay the foundation for prospective validation of the deep 

learning-based approach. 

Over the past decade there has been an evolution in the management children with 

BSOIs.  In the past,  grade of injury based on CT findings guided management. Nowadays, 

hemodynamic status is recognized as a more individual-specific means to tailor therapy to the 

degree of solid organ injury and the needs of the child. For example, many institutions 

previously performed serial hemoglobin/hematocrit studies to assess for ongoing hemorrhage, in 

addition to vital signs monitoring. Recent studies have shown, however, that repeat or serial 

hemoglobin levels following BSOI are of limited utility (15, 16). Additionally, a prior study by 

Acker et al demonstrated that pediatric BSOI patients who failed non-operative management did 

so at a median of 4 hours from the time of injury (1). Our findings corroborate the lack of utility 

of trending hemoglobin lab values beyond four hours, as the serial hemoglobin values poorly 

correlated with failure of NOM, mortality, and successful NOM without intervention. Moreover, 

our models demonstrate that the clinical history and laboratory values available at four hours 

outperformed the models that utilized clinical history and laboratory values available at 24 hours. 
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Thus, the information available within four hours of presentation is often adequate for decision-

making in this critically ill patient population.  

Our study sheds additional light on the benefits of using TEG to identify severely injured 

pediatric trauma patients. The use of TEG and its association with MT and mortality has 

primarily been explored in the adult literature. Specifically, Coleman et al. found that adults with 

blunt solid organ injuries were hypercoagulable upon admission, as demonstrated in their ED 

TEGs (17). Over half of the study patients had evidence of fibrinolysis shutdown on admission. 

TEG may help with the early identification of patients with severe blunt solid organ injuries, who 

will require an intervention and are at risk for poor outcomes. Specifically, in this study, we 

found that LY30 had a positive correlation with the need for MT and failure of NOM. Future 

work with an increased number of patients and universal TEG measurement would be logical 

next steps to building upon these initial findings. 

As a result of this study, we recommend routine laboratory evaluation of BSOI patients 

with ED hemoglobin, base deficit, lactate, INR, and TEG. While many of these features (i.e. 

laboratory studies) showed moderate correlation with outcomes, only a few had strong linear 

correlations. The deep learning models further demonstrated that the best steps in the clinical 

management of select patients who need MT, angioembolization, and/or surgical management is 

complex. The Pearson correlations provided some insight into the linear correlations between 

clinical characteristics and outcomes; however, in real life, all outcomes are not linearly 

correlated with inputs. The advantage of deep learning is that it transforms raw inputs into 

meaningful outcomes by learning the complex relationships between combinations of inputs and 

outcomes. Thus, improvements in the accuracy of the models will arise from larger volumes of 

empirically validated data across a variety of clinical domains (18).  
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There are various options to deploy machine learning models into production at scale, to 

use them in real-world clinical applications. One common approach is to save the models and 

build an application with Representational State Transfer (REST) endpoints to deploy the models 

using a cloud provider. TensorFlow Serving is another option. It is an efficient model server that 

can sustain a high load and has a model repository to automatically deploy the latest versions. 

Integration of the models in either the electronic medical record or a cloud-based platform could 

allow for easy access and rapid application in the pre-hospital or trauma bay setting. 

 There are multiple limitations to our study. First, this was a retrospective single center 

study. Second, deep learning models typically require large datasets, and our dataset only had 

477 patients. Third, there was missing data in our cohort. For example, several patients did not 

have available pre-hospital vital sign data and only 23 patients had available TEG data.  

 .  

Conclusion 

Deep learning models show promise in the early identification of pediatric blunt trauma 

patients at risk for adverse outcomes. One advantage of deep learning models is that they do not 

require specific components used by traditional scoring systems to predict need for MT or 

mortality. In this preliminary, single-center study of children with BSOI, applying a DL based 

algorithm helped correctly identify patients who were successfully treated without intervention. 

The MT model identified patients needing emergent intervention with higher sensitivity and 

specificity compared to existing approaches like ABCD (7). There is no widely used predictive 

model for the failure of NOM. The failure of NOM model had high a sensitivity of 91.7% and 

specificity of 83.5%. The mortality model provided high sensitivity, specificity, and accuracy.  

As such, it could be envisioned as an early warning system to alert clinicians of impending 
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deterioration. Considering nearly 90% of patients were successfully managed non-operatively, 

the successful NOM without intervention DL model might be a useful tool for identifying the 

majority of patients who can be successfully managed with fewer resources in less intensive 

clinical settings, thus lowering the cost of care.  

 

Our models demonstrated that clinical findings within four hours of presentation could be 

used for critical clinical decision making for pediatric BSOI patients as model performance did 

not improve with trended data from the first 24 hours following admission. This suggests that 

serial blood draws beyond four hours may not be needed. Similarly, a positive FAST exam did 

not make a significant difference in prediction performance. Conversely, considering the 

relatively high correlation between TEG and outcomes, we hypothesize that inclusion of TEG 

may help to identify those patients at greatest need for an emergent intervention.  

Further research with a larger population, with less emphasis on the FAST exam and 

universal application of TEG, is needed to further validate the feasibility of applying a DL 

framework to the management of pediatric trauma patients with BSOIs. Denser patient data, 

including continuous physiological data and natural language processing of semantic data, are 

next steps to improving the models. In our false positive and false negative analysis, the presence 

of a severe traumatic brain injury or pelvic/femur fracture were important factors that affected 

initial hemodynamic status. Future models with input signals for comorbid injuries may further 

improve the performance and utility of DL models. 
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Table 1: Characteristics of Children with Successful Non-operative Management (with no 

MT) vs Other Outcomes [Required intervention (MT or surgery) or Mortality] 

 

 Count 

Successful NOM 

without 

Intervention Count 

Other Outcomes 

(Required 

intervention or 

Mortality)  

P-

value 

Demographics      

Age (years), 

median(IQR) 425 11 (6.0,14.0) 52 9.5 (5.5,1.0) 0.2516 

Gender, Male/Female 425 273 M/152 F 52 38 M/14 F 0.2072 

Clinical 

Characteristics      

GCS, median (IQR) 425 15.0 (15.0,15.0) 52 3.0 (3.0,15.0) 

< 

0.0001 

Injury severity score, 

median (IQR) 424 12.0 (9.0,17.0) 52 34.0 (25.0,45.0)  

Liver grade, median 

(IQR) 229 3.0 (2.0,3.0) 32 3.0 (2.0,5.0) 0.2745 

Spleen grade, median 

(IQR) 219 3.0 (2.0,3.0) 31 3.0 (2.0,4.0) 0.2552 

Kidney grade, median 

(IQR) 31 3.0 (2.0,3.5) 4 3.5 (2.8,4.3) 0.9102 

Multiple organ 

injuries, n(%) 423 49 (11.6%) 52 14 (26.9%) 0.5117 

Head injury, n(%) 425 42 (9.9%) 52 34 (65.4%) 

< 

0.0001 

Isolated BSOI, n(%) 423 222 (52.5%) 52 8 (15.4%)  

Pulmonary contusion, 

n(%) 416 120 (28.8%) 51 30 (58.8%)  

Major orthopedic 

injury, n(%) 423 140 (33.1%) 52 26 (50.0%)  

Pancreatic injury, 

n(%) 423 8 (1.9%) 52 7 (13.5%)  

Intestinal injury, n(%) 423 2 (0.5%) 52 12 (23.1%)  

Intubated field, n(%) 425 30 (7.1%) 52 31 (59.6%)  

Intubated ED, n(%) 425 34 (8.0%) 52 33 (63.5%)  

CPR in field, n(%) 425 2 (0.5%) 52 15 (28.8%)  

CPR in ED, n(%) 425 0 (0.0%) 52 15 (28.8%)  

Any blood transfused, 

n(%) 425 49 (11.53%) 52 46 (88.46%)  

Received blood 

transfusion pre-

hospital, n(%) 425 22 (5.18%) 51 15 (28.8%)  

Labs & Work-up      
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INR, median(IQR) 191 1.2 (1.1,1.3) 47 1.5 (1.3,2) 

< 

0.0001 

Lactate, median(IQR) 59 2.5 (1.3,3.7) 29 4.4 (2.8,8.2) 

< 

0.0001 

Base deficit, 

median(IQR) 124 -5.0 (-7.0,-3.0) 45 -9.0 (-14.0,-6.0) 

< 

0.0001 

Pre-hospital SIPA, 

median(IQR) 393 1.0 (0.9,1.2) 50 1.4 (1.2,1.9) 0.2731 

ED SIPA, 

median(IQR) 425 0.9 (0.7,1.1) 52 1.3 (1.0,1.8) 

< 

0.0001 

R-time, median(IQR) 9 4.5 (4.2,5.0) 14 5.8 (4.5,7.3) 

< 

0.0001 

Angle, median(IQR) 9 67.5 (61.1,69.3) 14 57.5 (45.5,67) 

< 

0.0001 

MA, median(IQR) 9 59.9 (56.6,61.9) 14 55.0 (50.1,62.1) 

< 

0.0001 

LY30, median(IQR) 4 0.0% (0.0, 3.0%) 13 0.0 (0,2.5%) 

< 

0.0001 

Abnormal Values      

Abnormal INR value, 

n(%) 425 74 (17.4%) 52 43 (82.7%) 

< 

0.0001 

Abnormal Base 

Deficit, n(%) 425 84 (19.8%) 52 41 (78.8%) 

< 

0.0001 

Abnormal Lactate, 

n(%) 425 34 (8.0%) 52 28 (53.8%) 

< 

0.0001 

Abnormal Pre-

hospital SIPA, n(%) 425 204 (48.0%) 52 42 (80.8%) 0.2731 

Abnormal ED SIPA, 

n(%) 425 109 (25.6%) 52 40 (76.9%) 

< 

0.0001 

Abnormal R time, 

n(%) 425 3 (0.7%) 52 6 (11.5%) 

< 

0.0001 

Abnormal MA, n(%) 425 2 (0.5%) 52 7 (13.5%) 

< 

0.0001 

Abnormal LY30, 

n(%) 425 3 (0.7%) 52 12 (23.1%) 

< 

0.0001 

Abnormal Angle, 

n(%) 425 1 (0.2%) 52 5 (9.6%) 0.1541 

Abnormal 

Hemoglobin in ED, 

n(%) 425 117 (27.5%) 52 30 (57.7%) 

< 

0.0001 

Abnormal 

Hemoglobin at 2 

hours, n(%) 425 387 (91.1%) 52 42 (80.8%) 0.0199 

Abnormal 

Hemoglobin at 4 

hours, n(%) 425 374 (88.0%) 52 43 (82.7%) 0.2769 
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Abnormal ED HR, 

n(%) 425 243 (57.2%) 52 45 (86.5%) 

< 

0.0001 

Abnormal ED BP, 

n(%) 425 183 (43.1%) 52 36 (69.2%) 

< 

0.0001 

FAST positive, n(%) 425 83 (19.5%) 52 19 (32.7%) 0.0404 

Outcomes      

Hospital length of 

stay days, 

median(IQR) 425 3.0 (2.0,5.0) 52 8.0 (2.0,16.0)  

Ventilation days, 

median(IQR) 425 0.0 (0.0,0.0) 52 2.0 (0.8,5.0)  

ICU length of stay, 

median(IQR) 425 0.0 (0.0,1.0) 52 3.0 (1.0,6.3)  

Required orthopedic 

surgery, n(%) 425 46 (10.8%) 52 4 (7.7%)  

Abbreviations: Glasgow coma score (GCS), International Normalized Ratio (INR), Interquartile 

range (IQR), Cardiopulmonary resuscitation (CPR), Emergency Department (ED), Shock index- 

pediatric adjusted (SIPA), R-time (R), MA (Maximum amplitude), thromboelastography lysis at 

30 minutes (LY30), Heart rate (HR), Blood pressure (BP), Intensive care unit (ICU) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Top 25 Features associated with Outcomes Based on Absolute Pearson’s 

Correlation Coefficient Values 

Massive 

Transfusion 

Features 

R Failed NOM 

(Required 

Surgery) 

Features 

R Mortality 

Features 

R Non-operative 

Management 

without 

Intervention 

Features 

R 

Required 

pRBCs at 4 

hours 

0.68 LY30 0.43 CPR in the 

field 

0.68 GCS 0.53 

Required FFP 0.65 Abnormal 0.42 CPR in the ED 0.66 CPR in ED 0.52 
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at 4 hours LY30 

Required 

Platelets at 4 

hours 

0.58 R-time 0.40 Base Deficit 0.65 Intubated in the 

ED 

0.50 

Abnormal 

LY30 

0.53 MA 0.38 INR 0.61 Intubated in the 

Field 

0.49 

Intubated in 

the ED 

0.48 Angle 0.38 Lactate 0.58 ED SIPA 0.48 

GCS 0.47 Abnormal 

INR 

0.35 GCS 0.54 CPR in the Field 0.48 

Intubated in 

the field 

0.45 ED SIPA 0.34 Intubated in the 

ED 

0.53 Abnormal INR 0.47 

Abnormal MA 0.43 CPR in the 

ED 

0.32 Intubated in the 

field 

0.53 Abnormal Lactate 0.42 

INR 0.43 Abnormal MA 0.32 Required FFP 

at 4 hours 

0.50 Abnormal Base 

Deficit 

0.42 

ED SIPA 0.42 Abnormal 

Base Deficit 

0.32 Required 

pRBCs at 4 

hours 

0.49 LY30 0.41 

Base Deficit 0.42 Base Deficit 0.29 Head injury 0.46 Abnormal LY30 0.40 

Head injury 0.41 ED Blood 

Pressure 

0.29 ED SIPA 0.42 ED Blood 

Pressure 

0.38 

Received 

pRBCs pre-

hospital 

0.40 Abnormal 

Lactate 

0.28 ED Blood 

Pressure 

0.38 R time 0.36 

Angle 0.39 GCS 0.28 Required 

Platelets at 4 

hours 

0.36 MA 0.35 

Abnormal 

Angle 

0.38 Abnormal ED 

SIPA 

0.27 Pre-hospital 

Blood Pressure 

0.35 Angle 0.35 

CPR in the ED 0.37 Intubated in 

the ED 

0.26 Pre-hospital 

SIPA 

0.31 Lactate 0.35 

Abnormal 

Base Deficit 

0.37 Abnormal 

Angle 

0.26 R-time 0.31 Base deficit 0.35 

ED Blood 

Pressure 

0.37 Abnormal R-

time 

0.26 Abnormal INR 0.31 Abnormal ED 

SIPA 

0.34 

Abnormal INR 0.37 Intubated in 

the field 

0.26 Abnormal Base 

Deficit 

0.29 Abnormal MA 0.30 

Abnormal R-

time 

0.37 Lactate 0.23 Abnormal 

Lactate 

0.28 INR 0.29 

Lactate 0.35 Blood 

pressure at 4 

hours 

0.23 Received blood 

pre-hospital 

0.27 Blood pressure 4 

hours after 

presentation 

0.28 

Received 

blood pre-

0.34 INR 0.21 Presence of 

Intestinal 

0.27 Abnormal Angle 0.26 
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hospital Injury 

Received FFP 

pre-hospital 

0.34 CPR in the 

field 

0.21 Hemoglobin in 

ED 

0.26 ED heart rate 0.25 

MA 0.34 Heart rate at 4 

hours 

0.19 Failure of Non-

operative 

management 

0.26 Abnormal R time 0.25 

Pre-hospital 

SIPA 

0.32 Abnormal 

Pre-hospital 

SIPA 

0.17 Hemoglobin at 

2 hours 

0.24 Heart rate at 4 

hours 

0.21 

Abbreviations: packed red blood cells (pRBCs), frozen fresh plasma (FFP), 

thromboelastography lysis at 30 minutes (LY30), International Normalized ratio (INR), Shock 

index- pediatric adjusted (SIPA), cardiopulmonary resuscitation (CPR), Maxiumum amplitude 

(MA), Glasgow Coma score (GCS), Emergency department (ED) 
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Table 3: Demonstration of the 4 and 24 hour Deep Learning Models (Validation set) 

Outcome Model Accuracy Sensitivity Specificity AUC 

 

Massive Transfusion 4 Hours 90.5% 88.9% 90.5% 0.90 

 24 Hours 90.0% 88.9% 90.0% 0.90 

Failure of NOM/Need 

Surgery 

4 Hours 83.8% 91.7% 83.5% 0.88 

 24 Hours 82.4% 91.7% 82.1% 0.87 

Mortality 4 Hours 91.9% 100.0% 91.8% 0.96 

 24 Hours 91.9% 100.0% 91.8% 0.96 

Successful NOM without 

Intervention 

4 Hours 90.3%           90.4% 88.2% 0.89 

 24 Hours 86.9% 86.8% 88.2% 0.88 
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