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Review 

Red blood cell alloimmunization immunogenetic risk 
factor 
Pascal Pedini1,2, Jacques Chiaroni1,2 and Christophe Picard1,2   

Alloimmunization to blood group antigens is the result of a 
humoral immune response initiated by exposure to foreign 
antigens absent from the recipient’s red blood cells (RBCs). 
Interestingly, not all individuals who receive mismatched RBC 
transfusions develop alloantibodies. Increasing evidence points 
to the role of the classical human leukocyte antigen (HLA) 
system in modulating this immune response. More recently, 
polymorphisms in nonclassical HLA molecules have been 
implicated in the regulation of inflammatory responses, 
particularly in patients with sickle cell disease. The role of 
natural fetomaternal microchimerism may also be a factor to 
consider in explaining individual variability in alloimmune 
response. 

The genetic diversity of both RBC antigens and HLA across 
ethnic groups underscores the need for high-throughput 
sequencing technologies to improve donor–recipient matching. 
In the future, genotyping strategies should aim not only to 
assess individual risk for alloantibody development but also to 
guide the selection of compatible RBC units, thereby reducing 
the likelihood of alloimmunization. 
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Alloimmunization against blood group antigens is a hu
moral immune response triggered by exposure to anti
gens absent in the recipient but present on transfused 
red blood cells. This response is based on adaptive im
munity, which is highly specific and able to generate 
immune memory. Following re-exposure to the same 

antigen, the immune system produces a faster and 
stronger response. 

The adaptive immunity and human leukocyte 
antigen system 
Adaptive immunity requires the cooperation of antigen- 
presenting cells (APCs), B lymphocytes, and T lym
phocytes. T cell receptors recognize antigens when they 
are bound to membrane proteins called major histo
compatibility complex molecules or human leukocyte 
antigen (HLA) system in human. Classical HLA class I 
(HLA-A, -B, -C) and nonclassical HLA (HLA-G, -E, -F) 
are expressed by all cells, with varying density. Class II 
molecules (HLA-DR, -DQ, -DP) are expressed by 
APC cells. HLA molecules contain variable regions that 
form peptide-binding pockets (P1–P9). Certain re
sidues — especially at positions 13, 70, 71, 74 et 78 of the 
DRB1 gene — play a crucial role in determining T cell 
recognition and immune outcomes. These polymorph
isms influence both alloimmunization and susceptibility 
to autoimmune diseases. 

T lymphocytes are divided into two main subsets: CD8+ 
cytotoxic T cells, which recognize peptides presented by 
class I HLA molecules, and CD4+ helper T cells, which 
respond to class II restricted peptides. CD4+ T cells are 
essential for activating B cells and promoting antibody 
production, making them central players in alloantibody 
formation. Therefore, variations in HLA class II 
genes — particularly DRB1— can significantly impact 
an individual’s ability to mount an immune response to 
foreign antigens. 

HLA analysis has been revolutionized by advances in 
molecular typing. Since 2013, next-generation sequen
cing (NGS) has overcome many of the limitations of 
previous techniques by enabling high-resolution, high- 
throughput allele typing. In spite of its technical re
quirements, NGS allows for the complete sequencing of 
HLA genes and the rapid analysis of large volumes of 
samples. Underscoring the complexity and importance 
of personalized HLA typing in transfusion and trans
plantation medicine, more than 41 000 HLA alleles have 
been identified to date, including more than 3800 DRB1 
variants [1]. 

Blood group 
To date, the International Society of Blood Transfusion 
(ISBT) has approved 47 human red blood cell (RBC) 
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blood group systems, including 362 antigens [2]. These 
antigens are classified according to strict ISBT criteria: 
They must be defined by a human alloantibody, have a 
hereditary pattern, be encoded by a sequenced gene at a 
known chromosomal location, and be genetically distinct 
from previously identified systems. Blood group antigens 
can be proteins or carbohydrates, most commonly re
sulting from single-nucleotide polymorphisms (SNPs). 
These SNPs can allow antigen expression, create new 
antigens, or result in weakened or absent expression. 
More complex mechanisms may also influence blood 
group phenotypes. 

In the population, the frequency of antigens varies 
considerably: 184 antigens are highly frequent (present 
in > 99.6% of individuals), 134 are less frequent (< 1%), 
and the others are polymorphic. These frequencies im
pact on transfusion compatibility. 

The incidence of alloimmunization after transfusion 
ranges from 1% to 35% depending on population ge
netics and exposure history. Alloimmunization is more 
common in certain clinical settings, particularly when 
the donor and recipient are of different ethnicities. For 
example, patients with sickle cell disease (SCD) develop 
anti–red blood cell alloantibodies in 30% of cases when 
transfused with blood from Caucasian donors, but in 
only 6% of cases when transfused with blood from do
nors of African descent [3,4]. 

Serologic hemagglutination is the gold standard for red 
blood cell phenotyping, but it has limitations in the 
detection of rare antigens due to cost and labor con
straints. Molecular genotyping made its appearance [5,6] 
with the first methods such as Polymerase Chain Reac
tion, Matrix-Assisted Laser Desorption/Ionization - 
Time Of Flight Mass Spectrometry, and DNA chips. 
However, these tools only detect known polymorphisms, 
limiting their application. Next-generation sequencing 
(NGS), used for HLA typing, is transforming blood 
group genotyping with the emergence of commercial 
solutions [7]. It enables high-throughput analysis of the 
entire gene. While powerful, NGS requires advanced 
bioinformatics and data storage capacity. Third-genera
tion platforms, such as Oxford Nanopore Technologies 

(ONT), offer long-read sequencing that resolves com
plex genomic regions and allows for haplotype phasing, 
essential for accurate blood group determination [8,9]. 
These technologies open the way for rapid identification 
of compatible donors not only on red cell antigens but 
also on HPA, HNA, and HLA antigens, which will re
present significant advances in the prevention of al
loimmunization [10]. 

The immunogenicity of red blood cell antigens is vari
able between and within blood group systems. The most 
immunogenic systems are RH, KEL, FY, JK, and MNS, 
with RH1 (D) being the most immunogenic in European 
populations, followed by KEL1. Other antigens have 
variable immunogenic potential. In clinical practice, 
approximately 50% of alloantibodies are directed against 
RH antigens, 40% against KEL1 and FY1, and only 5% 
against other specificities [11]. 

Classic human leukocyte antigen and red 
blood cell alloimmunization 
For several years, numerous studies have consistently 
shown a correlation between the presence of specific 
classical HLA alleles and the development of anti-RBC 
alloimmunization (Table 1). 

Anti-D 
Although older publications show no significant corre
lation between the HLA typing of ‘good responders’ to 
RH1 (D) antigen and ‘poor responders’ [12], many more 
current studies have already shown that HLA-DRB1*15 
confers to susceptibility to D alloimmunization [13]. 
This association was supported by an anti-D immune 
response could be induced by HLA-DRB1*15 trans
genic mice and by the overrepresentation of HLA- 
DRB1*15:01 allele in D-negative donors who have 
produced D antibodies in response to exposure to D- 
positive RBC units [14]. Other authors show a link be
tween HLA-DRB1*01 and anti-D immunization [15]. 

Anti-E 
Few studies have shown that alloimmunization with the 
E antigen is associated with HLA-DRB1*09 in 
European populations [15,16]. This association is con
firmed in China with high frequencies [17–19]. The 

Nomenclature  

APCs antigen-presenting cells. 
CD cluster of differentiation. 
FY Duffy. 
GvHD graft-versus-host disease. 
HLA human leukocyte antigen. 
HPA human platelet antigen. 
HNA human neutrophil antigen. 

JK Kidd. 
KEL Kell. 
MHC major histocompatibility complex. 
NGS next-generation sequencing. 
NIMA maternal non-inherited antigens. 
RBC red blood cells. 
RH Rhesus. 
SCD sickle cell disease.   
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DR9 molecule interacts with the sequence containing 
the polymorphic determinants of the E antigen with 
high affinity [18]. 

Anti-Kell 
The in silico analysis using the TEPITOPE algorithm or 
NetMHCII software highlighted that the K antigen had 
a high degree of histocompatibility promiscuity, ex
plaining the high frequency of anti-K also found in all 
populations [20,21]. Thus, one anchor peptide L194- 
202G was able to bind to almost all DRB1 molecules in 
single responders with anti-K. In this case, the poly
mophism of Kell (193M), which is a residue before this 
peptide, seems to play the role of flanking residue, 
which allows better recognition of the antigen by the 
CD4+ T cells [22]. Interesting, DRB11 molecules 
seem to interact with anchor peptides close to the K 
antigen. Several studies showed that the frequency of 
HLA-DRB1*11 or HLA-DRB1*13 was significantly 
higher in K immunized patients [15,23,24]. The 
DRB1*11 and DRB1*13 alleles share an HLA-DRB1 
gene sequence containing S in position 13, D in 70 and A 
in 74, and coding for the P4 pocket within the HLA-DR 
binding groove. 

Anti-Fya 
Retrospective studies in European populations have 
shown that patients alloimmunized against the Fya an
tigen have an increased frequency of HLA-DRB1*01, 
HLA-DRB1*04, and also HLA-DRB1*15 alleles  
[15,25,26]. More specifically, one study found an asso
ciation with the HLA-DRB1*04:01 and HLA- 

DRB1*04:03 alleles, suggesting that some amino re
sidues of the P4 pocket may be involved in binding to a 
Fya peptide [25]. One study found an association be
tween anti-Fya immunization and HLA-DQB1*06, 
which is in fact in linkage disequilibrium with HLA- 
DRB1*15 [26]. Recently, the protective role of the 
HLA-DQB1*02 allele in Fya alloimmunization has been 
reported, which is consistent with other findings high
lighting the protective role of HLA-DRB1*03 and HLA- 
DRB1*07 alleles in linkage disequilibrium with HLA- 
DQB1*02 [25,26]. 

Anti-Jk(a) 
One French study showed that HLA-DRB1*01 was 
significantly more frequent in Jk(a) immunized patients, 
with a frequency of 50% of cases [27]. This association 
was confirmed [15]. 

The good responder 
It is reasonable to assume that cumulative immunization 
against different blood group antigens may account for the 
risk associated with transfusion of multiple units of red 
blood cells. The likelihood of developing a new alloanti
body increases significantly after a first RBC alloimmuni
zation, with a reported 3.5-fold increased risk [28]. Among 
previously immunized patients, 21% developed an addi
tional RBC antibody after further transfusions, with a 
median occurrence after two RBC units [29]. However, 
several studies suggest that this risk is not solely depen
dent on the number of units transfused but is more closely 
related to the immunologic profile of the patient, particu
larly the so-called ‘good responder’. This profile is ge
netically determined, independent of the underlying 
disease or the patient’s age, and relatively unrelated to the 
total number of transfusions received [28,30]. In addition to 
the D antigen, individuals carrying the HLA-DRB1*15 
allele are predisposed to produce alloantibodies to other 
antigens, such as E and K, particularly following in
compatible transfusions or pregnancy. HLA-DRB1*15 is 
often associated with multiresponders — patients who 
produce antibodies against multiple red blood cell antigens 
— and may confer a general susceptibility to antibody- 
mediated alloimmunity. Recent studies have confirmed 
that the frequency of the HLA-DRB1*15 allele is sig
nificantly higher in multiresponders compared to non
responders [15]. Notably, HLA-DRB1*15 is most 
commonly associated with anti-C and anti-D alloanti
bodies. In addition, compared to those who develop anti
bodies to a single antigen, individuals who develop 
multiple RBC alloantibodies are almost twice as likely to 
carry the HLA-DRB1*15 allele [15]. The association with 
HLA-DRB1*15 goes beyond alloimmunizing RBCs. It has 
also been associated with the development of multiple 
HLA antibodies, particularly in women exposed to trans
fusions and/or pregnancy [31]. Despite growing evidence, 
the mechanisms by which HLA-DRB1*15 contributes to 
alloimmunization against multiple antigens remain unclear. 

Table 1 

Classic HLA and RBC alloimmunization.      

Anti-RBC antibody Risk Protective Ref  

Anti-D DRB1*01 
DRB1*15 
DQB1*06  

[15,16] 

Anti-E DRB1*09  [15–18] 
Anti-K DRB1*11  [20,23] 

DRB1*13  [15,20]  
DRB1*07 [23] 

Anti-Fya DRB1*04  [15,20,25] 
DRB1*15  [15,25,26] 
DRB1*01  [15] 
DQB1*06  [26] 
DQB1*03    

DRB1*03 [25,26]  
DRB1*07 [25]  
DRB1*13 [26]  
DQB1*02 [26] 

Anti-Jka DRB1*01  [15,27] 
Anti-RBC antigen DRB1*15  [33] 

DRB1*15:03  [32,40] 
C*06  [24] 
DQB1*03  [24] 
DRB1*11  [33,40]   
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Probably, the efficient antigen presentation is not the main 
explanation. In silico analysis showed that no restriction 
molecule alone can display all the antigens analyzed. 
However, HLA-DRB1*15 has specific physicochemical 
characteristics in residues 11P and 13R in the P4 pocket, 
which together with the influence of other residues can 
favor the response to various antigenic peptides [21]. 

The most persuasive hypothesis involves the pro-in
flammatory profile associated with the HLA-DRB1*15 
haplotype. HLA-DRB1*15-positive individuals produce 
antibodies causing more complement and inflammation- 
mediated damage than HLA-DRB1*15-negative in
dividuals. Thus, cytokine profiles, TNFA −308G/A and 
IL1B −511T have been showed with susceptibility to RBC 
alloantibody formation in HLA-DRB1*15 SCD patients  
[13]. Finally, it has been suggested that HLA-DRB1*15 
could be a surrogate marker of the risk of RBC alloim
munization, which supports the idea that HLA typing 
before transfusion could be helpful in reducing alloim
munization in chronically transfused patients [32,33]. 

Inflammation 
Recent evidence showed that the inflammation status of the 
recipient is an important factor in the physiopathology of 
alloimmunization, notably in SCD [34,35]. In murine models 
of RBC transfusion, artificially induced inflammation en
hanced humoral immunization, antigen presentation by 
dendritic cells, and more pronounced proliferative responses 
of CD4-positive T cells [36,37]. Recipient inflammation also 
transformed RBC alloimmune nonresponders into re
sponders. While in the absence of inflammation, transfusion 
seems to result in tolerance to RBC antigens [38]. SCD is 
associated with a chronic inflammatory status [39] where 
nonspecific immune cells are activated by elevated levels of 
circulating hemoglobin and free heme released by hemolysis 
or by blood transfusions. The inflammatory phenotype of 
sickle cell disease is further characterized by high levels of 
acute-phase proteins and cytokines [40]. Genetic variability 
may influence the intensity and impact of this inflammation 
directly, particularly the severity of the disease and the oc
currence of red blood cell alloimmunization. In addition, al
loimmunized SCD patients showed reduced Treg and Breg 
activities, weakened immunoregulatory response, and in
tensification (increase) in T-cell response [41]. Interesting, 
few polymorphisms in genes involved in inflammation 
pathways, such as TRIM21, CD81, TLR1, TLR2, CTLA4, 
and FCGR2B, has been show associated with RBC alloan
tibody development [41,42]. 

Nonclassical HLA 
In this context, nonclassical HLA (HLA-G, HLA-E, and 
HLA-F) and their receptors (LILRB1, LILRB2, and 
KIR3DS1) could participate to inflammation levels in SCD 
and could influence the alloimmunization risk. Indeed, 
nonclassical HLA molecules play a major role in inducing 

tolerance during pregnancy but also in organ transplanta
tions [43,44]. HLA-G, HLA-E, and HLA-F are expressed at 
the materno-fetal interface, whereas trophoblast lacks all 
other classical class I antigens except HLA-C. Their tol
erogenic properties confer a peculiar interest in compre
hension of the alloimmunization process during pregnancy 
and transfusions. Thus, HLA allo-immunization was re
duced by certain HLA class Ib alleles (HLA-E*01:06, HLA- 
F*01:03, and haplotype HLA-G UTR4) during pregnancy  
[45]. HLA-G +3142C > G was more frequent among SCD 
patients who develop antibodies against antigens of blood 
group systems other than the Rh and Kell [46]. This poly
morphism has already been associated with a worse prog
nosis for some clinical conditions such as auto-immune 
diseases, spontaneous abortion, or organ transplantation  
[47–49]. The authors concluded that (1) HLA-G molecule 
may take part in the alloimmunization process; (2) the im
mune pathways underlying the development of antibodies 
against high and low immunogenic RBC antigens are likely 
to be different. Similarly, nonclassical open reading frame in 
the FCGR2C gene (FCGR2C.nc-ORF) was strongly asso
ciated with a decreased alloimmunization risk, and this 
protective effect was strongest for exposure to antigens other 
than the immunogenic Rh or K antigens [50]. A recent 
study involving 37 adult SCD patients did not confirmed 
difference in frequency of allelic frequency of HLA-G and 
HLA-E genes in alloimmunised patients and non
alloimmunised patients. However, the authors show that 
alloimmunization in DICS patients is associated with HLA- 
F and LILRB1 genetic polymorphisms located in their 
regulatory region and associated with their protein expres
sion levels [51]. HLA-F noncoding polymorphisms was 
previously associated with higher levels of HLA-F expres
sion in both immune and nonimmune cell types, but the 
function of HLA-F in adaptative immune system is not well 
known [52]. Interestingly, the protective effect was statisti
cally relevant only in the absence of the KIR3DS1 gene, 
suggesting that the interaction between KIR3DL1 and 
HLA-F may be important for immunomodulation in SCD 
patients. These discrepancies in the frequency of non
classical HLA alleles require multicenter studies with larger 
numbers of patients with or without sickle cell disease. The 
impact of nonclassical HLA regulatory polymorphisms may 
be different depending on the intensity of immunogenicity 
of the RBC antigens (high or low immunogenicity) and the 
type of pathology transfused (sickle cell disease vs leu
kemia). Furthermore, it must be investigated in a broader 
alloimmunisation perspective, since alloimmunisation 
against HLA [53] was reported to be associated with RBC 
antibodies in multitransfused SCD patients. 

Microchimerism 
The bidirectional exchange of cells between the fetus and 
the mother that occurs during pregnancy creates what is 
known as maternal–fetal microchimerism. This micro
chimerism persists in hosts for decades after delivery. Thus, 
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maternal noninherited antigens (NIMA) expressed on ma
ternal microchimeric cells are also present in the child [54]. 
The fetal immune system, exposed to maternal HLA mo
lecules during pregnancy, is expected to develop a tolero
genic response to these molecules. This NIMA concept 
mainly concerns the HLA system in the outcome of he
matopoietic stem cell transplantation and, more recently, in 
solid organ transplantation. It has been notably demon
strated a strong association of NIMA-matching with de
creased risk for the development of acute GvHD in the 
context of various transplantation strategies. Recently, ma
ternal grandmother cells have been observed in umbilical 
cord blood, confirming that pregnant mothers can transfer 
their mother’s exchanged cells [55]. Theoretically, it could 
be assumed that an RHD heterozygous grandmother could 
reduce via the NIMA effect, the anti-D immunization rate 
of the pregnant D-negative mother, as NIMA could induce 
a state of low reactivity [56]. This theory needs to be tested, 
as does its possible extension to the ‘non
responder’ phenotype in red cell alloimmunization. 

Conclusion 
Although the risk factors for alloimmunization are still 
poorly understood, they appear to be multifactorial, 
involving immunological, genetic, and maternofetal 
microchimerism components (Figure 1). In fact, 

alloimmunization against red blood cell antigens results 
from an adaptive immune response modulated by ge
netic factors, particularly class II HLA alleles. Certain 
alleles, such as HLA-DRB1*15, are associated with a 
‘responder’ profile, promoting antigen presentation and 
alloantibody production. The diversity of the HLA 
system contributes to the variability in immune re
sponses, especially toward RH, KEL, FY, and JK anti
gens. Nonclassical HLA molecules (HLA-G, -E, -F) may 
also play a regulatory role by influencing mechanisms of 
tolerance and inflammation — an especially relevant 
consideration in chronic inflammatory contexts, such as 
sickle cell disease. Red cell group genotyping in con
junction with HLA genotyping will become important 
methods in the prevention of alloimmunization in 
transfused patients. 
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Overview of risk factors involved in red blood cell alloimmunization.   
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